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• Routing congestion:
• Obtained after global routing
• Affect DRC violation distribution, power, 

timing, and etc.

5*These figures are from “Accurate Prediction of Detailed Routing Congestion using Supervised Data Learning”, in Proc. ICCD, 2014.

• Design rule check (DRC) violation:
• Obtained after detailed routing
• Decide whether the design can be taped 

out successfully or not.

Prior Knowledge Is Useful for P&R 
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• Main features of PROS:
• Predict routing congestion by deep learning

• PROS can learn the behavior of a specific router.

• Require only data from the placement result
• Runtime overhead of PROS is negligible.

• Just optimize the cost parameters of global routing
• PROS can be easily embedded into any other routers as a plug-in.

• Work well when integrated into the State-of-the-art commercial EDA tool*
• PROS is the first ML framework which demonstrates its practicality.

• Target of PROS:
• Reduce routing congestion and thus improve routability optimization (#DRC) 

8* Cadence Innovus v20.1

PROS: A Plug-in for Routability Optimization
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Overall Flow of PROS
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• For one technology node, the predictor only needs to be trained once.
• Feature extraction, prediction, and optimization of GR cost parameters can be performed very quickly.
• The original parts of the EDA tool are not changed a lot.
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• Features:
• Routing capacity map (horizontal, vertical)
• Standard cell density map
• Standard cell pin density map
• Pin accessibility density map
• Cross net density map (horizontal, vertical)
• Flip-flop cell density map
• Fixed cell density map
• RUDY map (small nets, large nets) 
• Pin RUDY map

• Label: 
• A 2-D binary map reflecting GR routing congestion:

• 1 à congestion
• 0 à no congestion

12

Features & Label Summary



• The capacity value: low à high; the color in image: black à white.
• 3-D features à 2-D image: accumulate all the layers.
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Horizontal capacity map Vertical capacity map

Routing capacity map
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Standard cell & cell pin density map

Cell density map Cell pin density map
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Pin accessibility density map
• Pin accessibility density map (𝐹)：

• For each cell 𝐶:
• For each pin 𝑝 of 𝐶:

• 𝑝 location: 𝑥, 𝑦,
• 𝑛𝑝𝑎𝑡 = #pin accessing patterns of 𝐶,
• 𝑛𝑝𝑖𝑛 = #pins of 𝐶,

• 𝐹 𝑥, 𝑦 += -./0120

34567- ×3493
.

• Higher value à More difficult to route
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Cross net density map

Horizontal
cross net 

density map

Vertical
cross net 

density map

• Blue boxes: a 5-pin net.
• Red box: BBox of the net.
• Green box: g-cells which will get net density.
• Horizontal (vertical) cross net density = 1 / #g-

cells in a column (row).

h
A column
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Flip-flop cell & fixed cell density map

Flip-flop cell density map Fixed cell density map
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RUDY map

RUDY map of 
small nets

RUDY map of 
large nets

#pins 4 5 6 <=8 <=10 <=15 <=20 >20

Ratio_#pins 1.06 1.13 1.19 1.31 1.42 1.66 1.87 2.22

• Large net: HPWL of the net BBox >= 15 * g-cell 
size.
• For each net:

• RUDY value of each g-cell in the net BBox = wire length / 
#g-cells in the net BBox.

• Wire length = HPWL of the net BBox * Ratio_#pins.
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Pin RUDY map
• Highlight the role of large nets on 

congestion prediction.
• A combination of cell pin density map and 

large-net RUDY map.
• The contribution of each pin on its location 

equals to the wire density of the large net 
it belongs to.
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Label Generation: Smoothening Process

Raw Label

• Purpose: generate more clear label to improve prediction accuracy.
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Label Generation: Smoothening Process

Raw After INSERT

• Smoothening process from raw GR congestion map to congestion label:
1. INSERT: If there are >= 6 congested surrounding g-cells, the center non-congested g-cell will be relabeled as 

congested.



22

Label Generation: Smoothening Process

After INSERT After CLEAN

• Smoothening process from raw GR congestion map to congestion label:
1. INSERT: If there are >= 6 congested surrounding g-cells, the center non-congested g-cell will be relabeled as 

congested.
2. CLEAN (10 iters): If there are <= 3 congested surrounding g-cells, the center congested g-cell will be relabeled 

as non-congested.
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Prediction Model
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Optimizer for GR Cost Parameters

Before optimization After optimization

• For each congested grid cell:
• Increase the overflow cost
• Increase the wire/via cost for the nets with large BBox
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Experimental Settings 
• Dataset:

• 19 designs: each design has ~80 different placements. Totally, we have ~1600 design cases. 

• Experiment:
• Divide 19 designs into 5 groups: 4, 4, 4, 4, 3. When testing one group, the remaining four 

groups will be used for training. Repeat the round of training and testing for 5 times. 

• Evaluation: 
• Positive: congested in label; Negative: no congested in label.
• True positive rate (TPR) = #True positive / #Positive, 
• Precision (PRE) = #True positive / (#True positive + #False positive), 
• False positive rate (FPR) = #False positive / #Negative, 
• F1 score (F1) = (2 * TPR * PRE) / (TPR + PRE),
• Accuracy (ACC) = (#True positive + #True negative) / (#Positive + #Negative).
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Results of Congestion Prediction
• Baselines for congestion prediction:
• LR1X1: Logistic regression. 
• LR9X9: Enhanced LR1X1 with a window size of 9 × 9 g-cells to capture neighboring 

features.
• OneSUB: Replace three cascaded SUBs by one RB and one SUB.
• ThreeSUB-NoSkipAdd: Remove all the skip connections and addition operators.

Model F1 (%) FPR (%) ACC (%)

LR1X1 63.86 25.39 75.25

LR9X9 66.38 16.70 79.67

OneSUB 70.09 10.45 84.23

ThreeSUB-NoSkipAdd 70.87 8.74 85.32

PROS 73.34 8.92 86.15
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Results of Routability Optimization
Designs Congested G-cell Ratio #DRC Violations Wire Length 

Diff (%)
Via Count

Diff (%)Orig (%) PROS (%) Diff* (%) Orig PROS PROS - Orig Diff (%)
Design1 3.93 3.74 -6.27 40 6 -34 -85.00 0.29 0.20
Design2 3.74 3.78 1.07 62 71 9 14.52 0.03 -0.09
Design3 2.91 2.78 -4.47 266 171 -95 -35.71 -0.04 -0.05
Design4 3.62 3.59 -0.8 59 48 -11 -18.64 0.12 0.03
Design5 7.40 7.25 -2.03 30 39 9 30.00 0.01 0.00
Design6 5.32 5.28 -0.75 31 34 3 9.68 -0.04 -0.09
Design7 11.41 10.99 -3.68 2350 2157 -193 -8.21 0.23 0.05
Design8 8.83 8.04 -8.95 1251 1306 55 4.40 0.29 0.19
Design9 3.01 2.91 -3.32 1422 1367 -55 -3.87 0.07 -0.11

Design10 4.52 4.25 -5.97 453 355 -98 -21.63 0.02 -0.15
Design11 5.48 5.11 -6.75 1105 1022 -83 -7.51 0.01 -0.08
Design12 6.05 6.18 2.15 628 603 -25 -3.98 0.11 0.01
Design13 5.40 5.31 -1.67 65 57 -8 -12.31 -0.01 0.04
Design14 5.35 5.13 -4.11 793 813 20 2.52 -0.01 -0.07
Design15 4.57 4.44 -2.84 870 722 -148 -17.01 -0.04 0.01
Design16 4.45 4.19 -5.84 636 502 -134 -21.07 -0.01 0.10
Design17 4.28 3.94 -7.94 581 556 -25 -4.30 0.10 0.16
Design18 8.38 7.91 -5.61 267 157 -110 -41.20 0.63 0.13
Design19 6.09 5.83 -4.27 879 862 -17 -1.93 0.14 0.03
Average -3.79 -49.47 -11.65 0.10 0.02

* Diff = 100% * (PROS – Orig) / Orig
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Conclusion
• Propose a prediction model used in PROS to predict routing congestion:

• Based on fully convolutional network (FCN),

• Only use data collected from placement,

• Achieve a high prediction accuracy.

• By utilizing prediction results, PROS can improve routability:

• Effectively reduce routing congestion ratio (-3.79%) and DRC violation number (-11.65%) by 

optimizing cost parameters of GR,

• Maintain wire length (+0.10%) and via count (+0.02%).



Thank you for your attention!
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Q & A
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